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The calculations of Huang and Reiss for the power spectrum of a pulse 
code modulation message is here extended, corrected, and generalized to 
include a formalism for an arbitrary Markovian process. The formalism 
contains arbitrary pulse shape and transmission times. For a first-order 
Markovian message the importance of the quasidiscrete frequencies is 
emphasized and it is concluded that these frequencies are more significant 
in defining the necessary bandwidth for transmission than any "optimized" 
choice of transmission times. 
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1, I N T R O D U C T I O N  

The relationship between thermodynamics  and informat ion  theory is well 

established. (1~ Recently Reiss <2> and Reiss and Huang  <a~ have investigated the 

application of statistical thermodynamics  to informat ion  theory. In the latter 

paper a general formalism was developed for compact  codes, and Huang 
and Reiss <~> applied this formalism to some specific examples of binary 

codes with and without memory. 
The at tempt in this last paper was to optimize (i.e., minimize) the 

transmission t ime-bandwid th  product. Huang  and Reiss came to the con- 
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clusion that their prescription of optimizing the transmission time per bit 
did not in all cases lead to a reduction of transmission time-bandwidth 
product compared to that which is obtained with a fixed transmission time. 
Since this conclusion appears somewhat surprising, the present investigation 
was initiated to review the concepts which underlay that result and to provide 
a better understanding of it. In fact, we find that the conclusion was the result 
of a mathematical error and that a correct analysis indeed leads to the 
expected result. 

In this paper we shall first briefly review the Huang-Reiss concepts, 
then extend and generalize them to a pulse-code modulation message based 
on an n-letter alphabet with arbitrary Markovian memory. This general 
formalism will then be reduced to the specific instance of a binary code and 
applied to the examples investigated by Huang and Reiss. Since our con- 
clusions differ from those of Huang and Reiss, we shall briefly trace their 
calculations in order to identify the origin of their error. 

2. S T A T I S T I C A L  T H E R M O D Y N A M I C  F O R M A L I S M  

Reiss and Huang TM consider the transmission of a binary PCM message 
(a sequence of pulses representing zeros and ones). They show that maximum 
information can be transmitted in a given transmission time if the length 
of the pulse transmission time is matched to the statistics of the message. 
Based on statistical thermodynamic arguments and an isomorphism between 
thermodynamics and information theory (which leads to information analogs 
of temperature, pressure, entropy, free energy,...) they define an information 
theory partition function. From this they deduce the optimum transmission 
time ~ for a given bit (0 or 1) to be 

~'~ = ~" In p~ (1) 

where pz is the probability of the bit b~ in the " language"  constituting the 
message. 

For correlated messages, ones in which the probability that a given bit 
will be transmitted is influenced by the bits previously transmitted, a more 
general formulation must be used. In this case the optimum transmission 
time for a particular bit , ( i[S) depends on the conditional probability 
p(ilS) that that bit will be used at that given position in the message 

r(i IS) = - ~- In p(i IS) (2) 

where p(ilS ) is the conditional probability of the bit bz appearing as the next 
bit in a message whose " s t a t e "  is S. For a finite Markovian system the state 
S is defined by a finite sequence of preceding bits. 
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In the third paper of the series, Huang and Reiss (4) introduce the Wiener- 
Khinchine theorem, (~) which relates the autocorrelation function of the 
message ~(t) to the power spectrum G(co), 

G(co) = e-*~ dt (3a) 
00 

in which co is the angular frequency and t is the displacement time in the 
autocorrelation function. We of course also have the inverse relationship 

f 
co 

q~(t) = (1/2~-) G(co)e -~~ dco (3b) 
-no 

These equations are familiar in other branches of physics as well. In atomic 
and molecular physics the correlation function is that of  the electric dipole 
operator and G(co) is the spectral line shape of the absorbed or emitted 
radiation, or ~b(t) is the autocorrelation function of the dynamics of molecular 
motion (position and time) and G(co) is directly related to the cross section 
for momentum and energy transfer in neutron scattering by the molecular 
system. (62 

3. G E N E R A L  P O W E R  D E N S I T Y  S P E C T R U M  

The autocorrelation function of a message is defined by the integral 

1 (~-t 
r = ~lim ~--Z--~3 ~ S('r)S(t  + "r) dT, t > 0 

(4) 
1y 

= lim S(T)S(I  + T)dr,  t < 0 

where SO') is the pulse intensity at time ~-. The limit implies that it is possible 
to transmit an infinitely long message from which the statistics can be deter- 
mined. If only a finite number of messages are possible, then the limit 
actually terminates at a time T required to send all possible messages. 
However, since a sequence of m messages transmitted in succession is itself 
usually a possible message, the "set  of all possible messages" is usually 
infinite and requires an infinite transmission time. An alternative to (4) is the 
ensemble average 

/ l ~T - t  dT 7 
r = (y - j0 + J (5) 

where T is now the length of a single message and the average is an average 
over all possible messages. In a strict operational sense (5) is just as difficult 
to carry out as (4), but it usually easier to conceptualize. Since the possible 



68 E. Richard Cohen 

number  of  long messages is very much greater than the number  of  short  
messages, the average is dominated  by the statistics of  messages for which 
T--> oo and hence we achieve (4) f rom (5) in the mean. 

In a strict sense r is usually normalized by dividing expression (4) 
by its value at t = 0, i.e,, by 

=((1/T) fo S~(r) &)  (6) r 

but for our present purposes we make  no use of  this normalizat ion and we 
shall therefore omit  it. Of  more  importance,  S( t )  is properly defined as the 
variat ion of  the t ransmit ted signal f rom the mean transmit ted intensity, so 
that  (in the absence of  long-range correlations) one has 

lim r = 0 (7) 
t = c o  

This suppresses the appearance  of  a delta function at ~o = 0 in the power  
spectrum G(co). We shall therefore assume that  S( r )  is so defined and hence 

/; ( ( l /T)  Sff)  & )  = 0 (8) 

We point  out that  (8) does not  imply (7), and that  the limit in (7) may  not  
exist if there are long-range correlations in S(r). The simplest and most  
c o m m o n  type of  long-range correlat ion in a message is the appearance  of  
periodicities in S(r). These arise primari ly f rom the artificial, but  common ,  
approximat ion  of  square pulses with equal (or rationally related) t ransmission 
times. In such cases the power  spectrum consists of  a discrete set of  frequencies 
(delta functions) as well as the cont inuum spectrum. We shall return to this 
point  later. 

We now describe the message in terms of  an a lphabet  of  letters bj. 
In a binary code there are only two letters bl = 0, b2 = 1; in English there 
are at least 27 characters,  2 bl = a, b2 = b, ba = c, etc. A message is a sequence 
of  letters bjlbj~bj3 ... and can then be characterized by the ordered set 
{Jl,J2,ja ..... Jk,...}. Since each message corresponds to a different sequence 
of  letters, the rnth message is denoted by the set {jam, J2m, jam,..', Jura,m} where 
N,~ is the number  of  letters in the ruth message. (The " m e s s a g e "  in the sense 
used here is the total set of  symbols  t ransmit ted and includes all identifiers, 
punctuat ion,  and redundancy checks which may  be transmitted.)  

We shall denote the signal or pulse associated with the letter b i as 
s(t;j), measured f rom some arbi trary zero of  time. Usually the signal will 
be such that  s(t;j) = 0 for t < 0 but  it is not  essential that  the t ime origin 

2 We include a blank space and all punctuation symbols which may be transmitted in a 
message as "characters." 
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associated with a signal pulse satisfy this condition. Since the message is 
t ransmit ted as a sequence of  pulses, each pulse must  be allowed a certain 
transmission t ime and hence the transmission of  the signal for  the kth letter 
requires a delay of  c9~ before the next pulse can be t r ansmi t t ed?  Thus the 
t ransmit ted signal corresponding to the sequence {jk,m} is 

s ( o  = ~ s(t - t~,m;]~,~) (9a) 
k 

where 

t l ,  m = 0 ,  

Substituting (9a) into (5) gives 

/ 1 f r-~ 
r  = \ T : - S j o  

The power  spectrum is then 

a(o~) = e-"~162 dt 
- c o  

= dt lim 

tk + l, m = tk, m + crik, m 

s(-r - t k ; jk )s ( ' r  + t -- t k ' ; j k ' ) d ~ - >  
k,k" 

dr  ~ s('r - tk;jk)s(r + t -- tk,;j~,)e-~t> 
k,k" 

(9b) 

(lO) 

01)  

If  we now put ~- -- tk = u and ~- + t - tk, = v, this becomes 

G(~o) = lira ~ ,  .J s ( u ; j k ) e x p ( i c o u ) d u  

x f s ( v ; j k , )  e x p ( -  icov) dv exp[ - iw( t~ ,  - t k ) ] >  

= lim ~ ~ g*k(m)[exp(ioJtJ]gj~,(oJ) exp(hotk,) (12) 
k , k '  

gj(co) is the Fourier  t ransform of  the pulse t ransmit ted for  the j th  symbol  of  
the alphabet.  Since the average is taken over  all messages, (12) reduces to an 
average over the language: 

G(co) = (l/(a~>)[<lg~(oJ)[ 2> + 2 Re<g~*(co) ~ Ts~jgj(co)>] (13) 
8 = 1  

3 It is also possible to consider that the time delay between the kth and the (k + 1)th 
pulses depends on the two characters b~ and bk+l, but we shall ignore this minor 
complication, and assume that the delay between two pulses depends only on the 
preceding character. 
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where 

T~ij = e-~% (13a) 

and 

t~ = & , -  t~ = ~ ~ (13b) 
r = O  

The time ts is the total displacement in time between the transmission of the 
symbol b, and the sth following symbol. 

Equation (13) is a much more convenient and more general expression 
than could be developed following the Huang-Reiss procedure. In their 
work the correlation function itself is explicitly evaluated and then the 
Fourier transform yields the power spectrum, As a practical matter the 
correlation function can be easily evaluated only when the transmission times 
of the individual pulses are rationally related. The complexity of this process, 
however, is apparent even in the simple case of a binary code with two 
pulse lengths in the ratio 1:2. For an arbitrary code the total time span 
which would need to be considered in constructing the correlation function 
would have to be the least common multiple of the transmission times of the 
set of message pulses. Furthermore, if the pulse shape were anything more 
complex than square pulses of arbitrary amplitude, the algebraic structure 
of the correlation function would be replaced by expressions involving 
convolution integrals of the pulse shapes. These complexities are essentially 
bypassed in Eq. (13), which expresses the power spectrum directly in terms of 
the Fourier transforms of the individual pulses gi(co) (containing the process 
of implementation of the message into a transmitted signal) and the time 
displacement matrix T,~ (containing the statistics of the j th  symbol of the 
alphabet appearing s positions after the ith symbol). 

Equation (13) is the general expression underlying the calculation of the 
power spectrum. In order to actually utilize this expression we must be able 
to evaluate, at least in a statistical sense, the time displacement function t~. 
The extent to which this can be done depends on the extent to which one 
knows the statistical structure of the language. 4 For the purposes of calcula- 
tion of power spectra the structure of the language is defined by the condi- 
tional probability that a letter bk appears in the language given the preceding 
sequence {Jl,J2 .... ,jj}. Uncorrelated messages imply that the probability of 
appearance of a given letter is independent of the previous sequence. If the 
minimum length of sequence required to completely define the statistics of 

4 The statistics of messages of course depends on the universe of discourse. The frequency 
of occurrence of particular symbols is dependent on the subject matter being transmitted. 
In the information theory sense, then, physicists and lawyers speak different languages. 
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the message is k, then the language constitutes a kth-order Markovian 
process. 

The simplest situation is, of course, the uncorrelated, or zeroth-order 
Markovian, process. The time displacement factor in (13) is independent of 
i and can then be written 

Tsj = ~ p k T ~ - l , k e  -~~ = ( T ~ - l > e - ~ %  (14) 

where p~ is the probability of appearance of the kth letter and ek is its 
transmission time. From this one obtains 

<T~> = <Ts_~<e-~~176 (14a) 

T~ = e - ~ ~  ~-~ (14b) 

and 

1[ G(oJ) = ~-~ <lg(co)l 2) + 2 Re <g*(~176 (15) 
i-W  ] 

We may also note that (15) may be simplified notationally even further by 
setting 

~r f cc ~(r = g * ( w ) e -  = s ( e  - t )e  - ~ '  dt (16) 
- o o  

so that g(w) is the Fourier transform of the pulse measured backward from 
its end, in distinction to g(w), which is measured forward from the start. 
I f  the pulse is symmetric, we then have g(r = g(r 

For a correlated message (15) may be generalized 

G(oJ) = (1/<~))<]g(w)t2) + 2 Re<g 'M(1  - M ) - l g )  (17) 

where g is a vector and M is a matrix of displacement factors. For  the 
uncorrelated process g is just the vector of the Fourier transforms of the 
pulses which make up the alphabet and M is the matrix 

M~k = e -~~  (18) 

In this case (17) reduces to (15). For a nth-order Markov process the trans- 
mitted pulse may depend not only on the symbol being transmitted but on 
the state of the system, i.e., the n preceding symbols as well as the symbol 
presently being transmitted. The "state  vector"  therefore consists of  an 
ordered sequence of n + 1 elements and the probability of the system 
emitting a symbol characterized by the last index is conditional upon the 
specification of the first n indices. In this case the transmitted pulse is identified 
by n + 1 indices and the vector g contains r ~ + 1 elements, where r is the number 
of  symbols in the alphabet. Thus g is actually an (n + 1)th-rank tensor 
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which is mapped into a vector. Equat ion (18) is then still valid ifp~ is replaced 
by the state transition probability which takes the system from state j to 
state k. This transition probability vanishes, of  course, if the last n elements 
of  the initial state do not  correspond to the first n elements of  the final state. 
Thus, if the state vector S is the sequence {abc . . . f } ,  the transition probability 
P(S - ->  S ' )  vanishes unless S '  is the sequence {bcd . . . fg} ,  in which case the 
transition probability is the conditional p robabi l i tyP(S  --> S ' )  = p ( g l b c d . . . f ) .  

The most  convenient mapping of  the state vector into a scalar (and 
hence the g tensor into a vector) is to consider the sequence abc . . . j  as the 
representation of  an integer in a base-r number  system. For  an nth-order 
Markovian process one then can write e~ = ar n + br n-  3 + ... + j and 

P ( S  ->  s ' )  = P ( ~  -+ /3)  - P~B 

= ~(r.cr rood r" + /3 rood r - k)p(/3 mod r[c~ rood r") (19) 

where ~(x) is the Kronecker  delta: 3(0) = 1 ; r = 0, x -r 0. 
We shall make no specific use of  this completely general formalism 

except to apply it to the case of  a binary first-order Markovian  process in 
Section 5. 

4. APPLICATION TO BINARY CODES 

The binary code consists of  two symbols, which we may take as 0 and 
1. it is simplest to consider a coding in which 0 is represented by the absence 
of  a pulse and a 1 by its presence. Huang and Reiss ~4~ considered only 
rectangular pulses, but we shall not specify the shape yet, leaving it arbitrary 
with a t ransform gl(c~). If  the probability of  a 0 is Po and that of  a 1 is Pl 
(with Po + Pl = 1), we have 

(Ig(r ~) = p~lgl(o))[ 2 

and 

( e  -~~ = p o e - ~ %  + ple-~~176 

(20a) 

(20b) 

(20c) 

where % and ~rl are the transmission times for the respective signals. Then, 
f rom (15) 

G(~o) - POP1] g1(r 2 
Po% + p~c~l 

I - -  C O S  eo(7  o 
• 

p0(1 - cos cOCro) + pl(1 - cos (1)o"1) - -  pop1[1 - cos r162 o - or1) ] 

(21) 
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I f  ao = a~ (fixed transmission rate), this reduces to 

G(w) = (plpo/a) lgl(r (22) 

which is a useful generalization of Huang and Reiss' result and reduces to it 
when Iga(w)] 2 is evaluated for a square pulse. However, we do not recover, 
in this formulation, the delta function which Huang and Reiss obtain. We 
can achieve this if the various limiting processes implicit in reaching (15) are 
carried out more carefully. On the other hand, as indicated above, we should 
define our symbol pulses in such a way that the time average over all messages 
is zero. Thus gl(w) should be replaced by 

i - e 7 ~,% 
g~(w)-p~ 7-~-~ g~(O) 

and g0(w), instead of representing the absence of any signal, should be 
considered to be 

P l  T w W  gl( ) 

The expedient of simply ignoring, in the power spectrum, the 8-function at 
zero frequency accomplishes the same end result. 

Huang and Reiss also consider an explicit nonconstant transmission 
time case with ao = 2al. In this case we obtain 

G(w) 4po 1 - p0 lg~(w)l~(1 + cos w ~ )  (23) 
~ 1 + p o l  + 2p0coswal  + p o  z 

which does not agree with the Huang-Reiss result. In the appendix we review 
the Huang-Reiss analysis and show, in fact, that errors were made in those 
calculations. 

For a rectangular pulse of  amplitude unity and width a~ we have the 
well-known transform 

g(w) = ir (24a) 

and 

2 (1 - cos w~l) = [(2/~o) sin (w~1/2]) 2 (24b) Ig fw)?  = 

I f  the bandwidth of the power spectrum is defined as the width at half 
maximum, then (22) has a transmission time-bandwidth product given by 
~w1~2 = 2.7831. For nonequal transmission times we have from (23) 

1 (sin r176 + 2p0 coswcrl + po2] -1 (25) A Po 
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where the '<optimized" transmission rate (with <so = 2<sl) corresponds to 
P0 = 0.381966. The mean bit transmission rate is (1 + Po)<sl and we find 

(1 + po)cqCOl/2 = 2.7008 

which is a reduction of  approximately 307 o compared to the case of  constant  
transmission rate. 

If, however, we return to (21) and, with P0 fixed, vary the ratio <sUch, 
we find that <<s>co1~2 has a minimum value 2.6538 (a reduction of  5~ below 
the uniform transmission rate value). This minimum occurs for <so/<sl = 1.509 
and hence corresponds to a transmission time ratio which is not as large as 
the ratio corresponding to the thermodynamic  opt imum ratio <so/<sz = 2. 

Figure l shows, for Po = 0.381966, the transmission t ime-bandwidth 
product  for a binary coded message. Bandwidth is defined as the value 
oJ112, [G(co1/2) = �89 calculated f rom (21) with Igl(co)12 corresponding to a 
square pulse. The small circles indicate the t ime-bandwidth product  for 
<So = ~ (<s~/<<s> = 1) and for ~o = 2<sl (<sU<@ = 0.7236). The dashed line is 
a similar curve for a Gaussian pulse shape, i.e., Igl(~o)12 = exp --~-(~o<s) 2. 

t I I I I i I ~ I ~ i l  
! 

! 
I 

2.80~% / 

'-'% it  
- I I 

i l  
,.,o: / /  

2.60 i I i I i I I I i I i 
0.6 0,7 0.8 0,9 1.0 

cs11<c~> 

Fig .  1. T i m e - b a n d w i t h  p r o d u c t  for  an  u n c o r r e l a t e d  m e s s a g e ,  p l  = (~F55 - 1)/2 = 

0.618034.  T h e  w i d t h  is de f ined  as the  f r e q u e n c y  at  h a l f  h e i g h t  o f  the  p o w e r  s p e c t r u m .  

So l id  l ine :  s q u a r e  pu l s e ;  d a s h e d  l ine :  G a u s s i a n  pulse ,  Igl(cO)[ 2 = exp [ - (<oa )2 /12 ] .  The  

t w o  o p e n  c i rc les  i d e n t i f y  the  cases  % = G1 a n d  ~o = 2e l  (<~1/<<~) = 0.7236).  
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The width of the Gaussian has been taken to be such that it has the same 
second moment as a square pulse and hence the power spectra of the two 
pulses have the same second derivative at co = 0. 

5. B I N A R Y  C O D E  W I T H  M E M O R Y  

When the probability of the appearance of a letter of the alphabet 
depends conditionally on the sequence of preceding letters one has a 
Markovian process. We shall now extend our analysis to the case of  a first- 
order process in which the probability of occurrence of a 0 or a l depends 
on the value of the preceding bit. The extension to higher order Markov 
process and to larger alphabets will be obvious. 

In the binary first-order process there are four conditional probabilities: 
Poo, Po~, P~o, and P11, where p~j is the conditional probability that bit j will 
occur when the preceding bit is known to be i. In more common conditional 
probability notation 

p~j = P ( j l i )  (26) 

In addition we also define the unconditional probabilities P0 and P1, 
the probabilities that a 0 or a I occurs in the message ensemble. These 
probabilities are not independent; we have the following relationships: 

E PiP~j = P~ (27a) 
i 

EP~J = 1 (27b) 
i 

E e l  = 1 (27c) 

This set of equations, which is generally valid for any first-order 
Markovian process, defines the state probabilities P, in terms of the off- 
diagonal transition probabilities p~j (i r j) .  These off-diagonal elements may 
be taken as the defining independent parameters of the Markovian process. 
For the binary case in particular we have 

and 

= P l o - - ,  P1 = "  Pol (27d) 
Po Plo + Pol Plo + Pol 

Poo - PooP~o , Pol = Plo - PolPlo , P l l  - P o l P l l  
Pol + Plo Pol + Plo Pol + Plo 

(27e) 

To construct the time displacement matrix M we identify the four state 
indices (00, 01, 10, 11) that define the conditional probabilities with the 
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matrix indices 0, 1, 2, 3. In order  to distinguish between the two fo rms  of  
enumera t ion  we shall use Greek  letters to indicate the matr ix  index (~ -- 
0, l, 2, 3) and Lat in  letters for  the state index (i = 0, 1). Wi th  the t rans i t ion  
probabil i t ies defined by (19), M then has the f o r m  

{~ oe-~~ p~e-~'~ 0 0 \ 

) 0 p~e-~C~ pae ~o~q 
M .- (28) 

o 

0 p~e-~~ p a e - ~ % ]  

and we find 

( g * M ( l  - M)~Zg) = (l/K)(g~*e-'~~ (29a) 

where, with ~:. = e-~'~ we have 

/ 1  - P3~3 1 - P3~3 P ~  P l ~  \ 
/ ) /P2~:2 P2~:2 1 - Po~:o 1 - Po~:o 

Q = l~l -p3~:~ 1 - p ~ : 3  pg:~ pg:~ 

\ p ~  p ~  1 - polo ~ - p o l o ~  

K = (1 - poseo)(1 - p ~ )  - P l P ~  (29b) 

The  second term in (13), which we can write symbol ical ly  as 2 Re(g*e-~'~ 
can then be expressed as 

( g * e - ~ g )  = ( l /K)  E Pc, g J ~ Q ~ p ~ g e  (30) 
aB 

W h e n  a 1 is t ransmi t ted  as a pulse and a 0 as blank,  then goo(co) = go(co) 
= 0 and gzo(co) = g~(co) = 0 and  the expression becomes  

1 
(g*d~ = ~; (Po~gz*~ + P~ga*~a)[P2~Pzgl + (1 - Po~o)Paga] 

_ Pl(P2(Ig~* + P3~aga*)[P2~2Plg~ + p3(l - Po~:o)g3] 
(Pl + p2)[(1 -- Po(o)(1 -- P3~3) -- P~P2~a~2] 

and 

= Pl Re Allgl*gl  + Alagl*g3 + Aalga*gl + A33g3*ga 

where 

A n  = p2[(1 - po~:o)(1 - PaPa) + PlP2~I~2] 

A13 = 2p2pz(1 -po~:o)se~, A ~  = 2p~P2pa~2~3 

Aaa = p3[(1 - po{:o)(1 + P3~3) - P~P2~2] 

(31) 

(31a) 
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If there is no  cor re la t ion  be tween  successive signals,  we have P0 = P2, 

Pz = Pa and  ~:o = ~:2, ~:1 = ~a, and  (31) reduces topa21gl2(z(l  - pos% ~ pzsel)- 1, 
which leads aga in  to Eq. (21). 

Fo r  square  pulses we in t roduce  (24a) and  (24b) in to  (31) and  m a k e  use 
of  the ident i ty  II - fl  2 = 2 Re( l  - ~:) for  [~:[ = 1; this reduces  (13) to the 
fo rm 

w2(@G(oj ) _ 2p~p2 Re (1 - Po~:o - p~(2)(1 - P2~:~ - P3~a) (32) 
P~ + P2 (1 - po~0)(1 - P a ~ )  -- P a P ~ I ~  

In  order  to c o m p a r e  this with the H u a n g - R e i s s  c o n d i t i o n  we n o w  

specify Po~ = P~o (p~ = P~) an d  Poo = P ~  (Po = Pa). F u r t h e r m o r e ,  we set 
%z = cq0 (% = ~ )  an d  %o = cql (% = aa), which implies  also ~:~ = e and  

f0 = s%. F o r  this case the d e n o m i n a t o r  in (32) factors  in to  two terms,  one  
o f  which cancels  one o f  the terms in the n u m e r a t o r ,  a n d  we then  o b t a i n  

(a)G(co)co ~ = p~ Re 1 - p ~ ,  - Pa~% 

p~pa(l - cos co%) 

= p~(l + cos o~c~) + pa(1 - cos co%) - p~pa[l + cos ~o(aa - at)]  

Wi th  a c o n s t a n t  t r ansmis s ion  rate, ~rl = % = a, this reduces  fu r the r  to 

2 p l p 3 ( l  - cos voa) 
c~G(c~176 = 1 + 2(pl  - Pa) cps ooa + (p ,  - pa) z 

(33) 

(34) 

which is one  o f  the cases cons idered  by  H u a n g  a n d  Reiss. They  also cons ide r  

the s i tua t ion  in which c~ a is twice ~1; this leads to @ )  = (1 + pa)cq and  

2 p i p 3 ( l  - cos coal) 
G(co) = (1 + pa)elco~[l - 2pa(cos co~1) + p~21 (a3 = 2a~) (35) 

The  Reiss prescr ip t ion  for  the " o p t i m u m "  t r ansmis s ion  rate is 

c~i i = - k  lnp~j and  hence for  % = 2% we h a v e p l  2 = P3 o r p z  = �89 - 1) 

= 0.61803, Pa = 0.38197. The  no rma l i zed  power  spec t rum G(co)/G(O) is 
shown in Fig. 2 for this va lue  of  p l .  The  d imens ion less  abscissa in this figure 

is the f r equency  t imes the m e a n  t r ansmis s ion  t ime. The  power  spec t rum is 

ca lcu la ted  for  several values  of  the ra t io  e1/~3 be tween �89 and  1. Because of  the 
cor re la t ion  in the message the power  spec t rum does no t  have its m a x i m u m  at 

co = 0. This  peak ing  of  the power  spec t rum is very m a r k e d  at ~x/% = 0.6 bu t  has 

d i sappeared  in Eq. (35), which  co r r e sponds  to ~l/aa = 0.5. The re  are, however ,  
" h i d d e n "  del ta  func t ions  in Eq. (33) whenever  I + cos coax a n d  1 - cos co% 

vanish  s imul taneous ly .  This  occurs  when  co~ 1 = (2k - 1)~r and  co~ = 2mTr, 

where k and  m are integers.  In  tha t  case 1 + cos[c~(aa - ez)] will also vanish.  

Hence  we ob t a in  a del ta  f u n c t i o n  at  co@) = ~[(2k - 2m - 1)pz + 2m]. The  
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Pl = 0 . 6 1 8 0 5 4  I l l  

0 
Fig. 2. Power  spec t rum for a f irst-order M a r k o v i a n  process,  P~o = po~ = (x /3  - 1)/2, 
squa re  pulse shape  lEq. (33)1. For  e~l = 2eo~, Eq. (35) does not  display the  delta func t ion ,  
which mus t  be de te rmined  by a l imit ing process  e ~  -+  2e0~. 

case c~ =- 2cr~ corresponds to rn = 2k - 1 and hence produces delta functions 
at co(cr) - ~(1 + pa)m. 

The resonance in Eq. (33) can be explicitly displayed by rewriting the 
expression in the form 

p lp3[(2/co) sin(co%/2)] s 
(cr)G(co) = (Pl sin cocq - Pa sin o)cro) ~ + (1 + Pl cos cocr 1 - Pa cos cocoa) s 

(36) 

an expression which approaches  the Lorentzian line shape. To  see this more  
clearly we now introduce ~rl/% = (2k - 1 + e)/2rn, so that,  with E << 1, 
the two transmission times are close to the critical rational ratio. Then 
with m~3 = 2mTr + e3~, Eq. (36) can be reduced to 

4pa I (P12L =cr3/2(cr))2 ] (37) 
a(co) = pa-~ooz 1 + (or)Z( ~ _ 80)2 + (plp3,%r2cr32/2(@2)2 j 

where go = - p ~ r / ( ~ )  gives the posit ion of the peak (in the limit E -~ 0). 
At the peak we have 

4p ,  [1 + (p l (c r ) '~<[  

while the width of  the peak is ~/ = ~2~Zpzpaaa2/(cr)a. The total area under this 
peak is therefore finite as ~ -+  0, and is equal to 2vp~2/(cr)zd, 2. The position 
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of these peaks is ~3 = 2mrr/e.a and since for % = 2%, m may be any odd 
integer, the total integral over all of the peaks (using the summation 
Z m -2 = ~r2/8) becomes 

4 \1 + p~! 

to be compared with the total area of the power spectrum G(co)dm = ~r. 
The total discrete spectrum is then 

Ga g 8(oJ) + ~ r l ~ 1 2  t l  - p3i 2 ~--~8l w ~ (38) 

which must therefore be added to the continuous spectrum, Eq. (35), to 
obtain the total power spectrum. 

6. C O N C L U S I O N S  

We have explored several explicit examples of pulse code modulation. 
The general formulation developed here for the calculation of the power 
spectrum of messages transmitted with an arbitrary alphabet and arbitrary 
symbol pulse shapes can be applied if the statistics of the language (in terms 
of the probabilities of occurrence of symbols in the message) can be defined. 
An attempt has been made to provide a recipe for optimization of transmis- 
sion times of the symbols in terms of the statistical-mechanical analog 
arguments of Reiss and Huang. In this connection, we have noted that the 
complete problem of optimization must be referred to the transmission time- 
bandwidth product rather than to transmission time alone. Depending upon 
the definition of bandwidth (half-width of first peak, etc.) the prescription 
for optimization may vary. In particular, for the definition we have chosen 
in Fig. 1, optimization is not achieved by the Reiss-Huang prescription. 

We have shown by explicit example that even with the time-bandwidth 
problem, no such generalization is possible because of the periodicities 
introduced into the signal correlation function if the transmission times of 
the pulses are rationally related. Quasiperiodicities exist if the ratios of 
transmission times are only approximately small rational fractions. Exact 
periodicities of course produce discrete frequencies in the power spectrum, 
whereas quasiperiodicities produce strong peaks in the spectrum correspond- 
ing to the frequencies of the periodicities. Since the lowest nonzero frequency 
peak will in general contain a significant fraction of the transmitted energy, 
the bandwidth required for transmission of the message will generally be 
limited by this feature rather than by any optimization process in terms of 
spectral half-width. It is also important to realize that the existence of the 
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peaks in the power  spectrum is determined by the statistics and t ransmission 
times of  the symbols  which constitute the message. The pulse shape, and the 
frequency content  of  the t ransmit ted pulses, can only affect the amoun t  of  
energy contained in these peaks, not  their existence. 

A P P E N D I X  

In this appendix we compute  directly the correlation functions for an 
uncorrelated and a correlated binary code. We follow in general the approach  
of Huang  and Reiss, (4~ but do not  use exactly the same notations.  Our  pr imary  
purpose here is to demonst ra te  directly the discrete frequency spectrum 
which arises f rom the assumpt ion  of  rationally related transmission times. 

As with Huang  and Reiss, we shall here assume square pulses; a square 
pulse of  length tl shall represent the binary symbol  1 and an absence of  signal 
of  length to shall represent a binary 0. Choosing an arbi trary point  in time, 
the probabil i ty  that  this point  lies within a pulse is 

p = pit1 (A.I)  
pit1 + poto 

where Pl is the probabil i ty  of  occurrence of a 1 in the message and P0 = 1 - Pl 
is the probabil i ty  of  occurrence of  a 0. For  the interval 0 < �9 < tl there is a 
probabil i ty  1 - r/t l  that  the interval r lies entirely within a single pulse and 
a probabil i ty  "r/t 1 that  it spans two message symbols.  Since the probabil i ty is 
pl  that  the second symbol  is 1, the correlat ion function is 

r = P [ I  - ( f f q )  + p~(.r/t~)] (A.2) 

For  longer times we must  specify the lengths tl and to; we choose the 
Huang  and Reiss case, to = 2h = 2~. We also denote the correlat ion function 
for  Ntl  < ~ < (N + l )q  by the notat ion CN(x) with .r = ( N  + x )h ,  
0 ~ x < 1. Since an interval of  length r may span a total o f N  + 1 or N + 2 
segments of  length ~, we have 

Cs(x) - (1 - p0) 2 [(1 - x)P~_l  + xPs]  (A.3) 
1 + P 0  

where PN is the probabil i ty of  a message of length No.  The recursion formula  
for PN, given by Huang  and Reiss, leads to Pu = [1 + po(Po)U]/(1 + Po) and 
the correlation function is 

( l  - 1 - p o  ( ]  _ 
r = \ ~ ]  {1 - ( -po)N[ l  - (1 + po)x]} + 

(A.4) 



Bandwidth  Limitat ions in Pulse Code Modula t ion  81 

The spectral density is then 

f0 ~ G(w) = 2 Re e-'~~162 dr  

2 fo 1 = 2or Re e-~,.N e-  ~~176 ) dx 
N = O  

= 2rr/1 - P~ 2 8(co) + 1 - Po 2or Re e-i~'~x(1 - x) dx 
1 + po 

1 - Po 2a Re ~ ( - - p o e - ~ ) N (  : e-*~ -- (l + po)x] dx 
I + P o  ~ = o  " Oo 

= 2 r r ( l  - p o ]  2 1 - Po  4 

1 - e -*~  ] 
x 1 - cos toe - (1 - Po) Re 1 g-po-eZ~'J  

= 2~r(l - po'i 2 8(~) + 4pop:  sin 2 ~o<r 
\ F g - E ]  + po)[1 + 2po cos + poq 

(A.5) 

This expression is then an alternative derivation of  Eq. (25) and does not 
agree with Eq. (27) of  Huang and Reiss. (:~ 

For  the correlated, first-order, binary code we follow Huang and 
Reiss <4~ and assume that a 1 following a 0, or a 0 following a l, uses a trans- 
mission time ~, while a 0 following a 0, or a 1 following a l, uses a trans- 
mission time 2a. We denote by Poo, Pox, P:o,  and P : I  the probabilities of  
occurrence of  the corresponding digraphs. The relative probability that an 
arbitrary point in time lies in the interval of  transmission of  

a 1 following a 0 is Po: 

a 1 following a 1 is 2 P : :  

a 0 fo l lowinga  1 is Po: = P : o  

a 0 following a 0 is 2Poo 

There are three possible situations corresponding to a pulse at this arbitrary 
point. They are (a) the point lies in a "single length" pulse, (b) the point  
lies in the first half of  a "doub le  length"  pulse, (c) the point lies in the 
second half of  a "double  length" pulse. The corresponding probabilities are 

Po: , Pb = Po = P : I  (A.6) 
P~ = I + P : I  + P00 1 + Pll + Po0 
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Using the same arguments  as in the analysis of  the uncorrelated message, 
we find for the correlation function in the interval 0 < ~ < 

r  = Co(x) = (P~ + Pc)[(l - x) + p l l x ]  + Pb (A.7) 

while for r = (N + x)~ we can write 

r  = CN(x) = (P~ + Pc)[(1 - x) (Pu  + --N~(=)+ 1) ~ + X(PN+I + 1u~ 2JJ~a 

+ Phi(1 -- x ) ( P s - 1  + PY>) + x(P~, + ~N+PC2' 1)] (A.8) 

where P~-~) is the frequency of a message segment of  length N, terminat ing in 
a 1 which follows a 0; p~2~ is the frequency of a message segment of  length 

; p~2~ We define Qu as N, terminat ing in a 1 which follows a 1 P =  P ~ + - u .  
the frequency of a message of length N, terminat ing in a 0. 

Since all message segments we consider follow a segment that  ends with 
a l, we can write immediately 

P1 = 0; P~) = PloPo~, p~2> = P n ,  P2 = P~oPo~ + Y~l (A.9a) 

Q~ = pl0; Q2 = 0 (A.9b) 

and the recursion relations are also straightforward:  

P ~  = QN- ~Po~ (A.10a) 

p~2> = Pu - 2Pl 1 (A. 10b) 

QN =- P N - l P l o  + QN-2Poo (A.10c) 

When we eliminate Q~. we obtain a recursion formula  for P~ [in fact, 
since the system of  Eqs. (A.10a)-(A.10c) is linear with coefficients that  are 
independent of  N, all of  the quantities P(~P, p~2>, PN, QN, and r satisfy 
the same recursion expression]: 

PN+I - -  (1 + PooP~I)P~-~ + PooP~PN-a  = 0 (A.11) 

The system is decoupled into independent solutions for  N even and for N 
odd, both of  which satisfy the same equation. When the conditions of  
Eq. (A.9) are imposed on the solution we find that  Px vanishes for N odd, 
and 

p(l~ = PolPlo [1 PooP11] (A. 12a) 
- 2 ~  1 - PooP11 

1 p(2) __ n n 
~'~ 1 - PooPll [PolP~ + P~oPooP~l] (A.12b) 

When we introduce (A.12a) and (A.12b) into (A.10a)-(A.10c) and make  
use of  relations (A.6) and (27e), we find 

Pol n n 

42~(x) - 2(1 - PooP~) 2 {po~(1 + p ~ )  + P~o(Poo + P~)PooP~I 

- p l o x [ p a o P o ~  + (Pl~ + Poo - 2pooPn)p~op'~]} (A.13a) 
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and 

P O 1  , ' ) ~  ~ n + l n n + l  
42n+1(X) = 2 ( 1  - -  PooP11) 2 {2p~po~ + ~vzoeoo r l l  

. ~ +  1_~+11x (A.13b) + pzox[ploPol - (2 - Poo - ~-llJvoo ~'zl Js 

The two expressions can be combined to give, with q2 = PooPzl, 

1 
4N(x) = a(l - q2)2 [p~z{(l + p1~)2 + (_)Up,o(  1 _ 2x)} 

+ polP~oqU{(Poo + p ~  + 2q)[1 -- (1 -- q)x]  

+ ( - fV (PooPz  ~ - 2q)[1 - (1 + q)x]}] (A.14) 

At long times, i.e., for N -+ oo, q~ -+ 0, the persistent part  of  the correlation 
function is 

p2oz 
4~*~~ -- 4(1 - q2)2 [(1 + pzl)2 + (__)Np~o( 1 _ 2X)] 

- -4(1  --q2)2 (1 + p z z )  2 + ~ = ~  ~ - 5  l y  J 

and this yields the discrete power spectrum 

4(1 - poop11) 2 

x [(I + pz~)23(~)+ 8 ( I -  P11)2 ~ ; 2 "  k=~ 3(o~-  [(2k(_2k_ -~ ~)l)/o])]__ (A.16) 

The regular part of  the power spectrum can be written 

_ PolPlo 1 Go(co) = 2(1 - - - -  a 
a - PooP11) 

~1 ic~c~X[A+(~c) --)NA-(x)] dx  x Re qNe- ~ ~  e -  , + ( 
N = O  dO 

1 = 2(1 - -PooP~)  2 1 ~ q-e -~'~ dx + 1 '+ '~--5-~.~ dx 

(A.17) 

where A'~(x) = (Poo + P~z +- 2q)[1 - (1 -7- q)x]. Thus the evaluation of  
the power spectrum can be reduced to evaluating the real part  of  that part 
of  either integra[ which is even in q. The algebra is now relatively simple and 
we finally obtain 

1 
- G o ( o ~ )  = 
G 

Polpl_Ao /'1 - cos ~or 
(1 - poopl l )  2 \ �89 J 

(Poo + p11)(1 + PooP11) + 4pooP11 C O S l ~ ~ 

(1 + PooP11) 2 - 4pooP11 cos 2 ~G 
• (A. 18) 
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The total power spectrum is of course Go(w) + Ga(co) from (A.18) and 
(A.16); this is in agreement with (32) when one sets ~:o = ~:3 = ~:2 and 

~1 = ~2 = ~:, and with (35) when one sets Poo = P n  = Pa, Pol --- Plo = P~- 
It should also be evident that  the construct ion of the correlation funct ion 

by a method similar to the arguments  used here would not be possible for an 
arbitrary relation between the two times tl and to and would have been 
significantly more complicated for an arbitrary pulse shape. 
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