Journal of Statistical Physics, Vol 13, No. 1, 1975
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The calculations of Huang and Reiss for the power spectrum of a pulse
code modulation message is here extended, corrected, and generalized to
include a formalism for an arbitrary Markovian process. The formalism
contains arbitrary pulse shape and transmission times, For a first-order
Markovian message the importance of the quasidiscrete frequencies is
emphasized and it is concluded that these frequencies are more significant
in defining the necessary bandwidth for transmission than any *optimized ™
choice of transmission times.
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1. INTRODUCTION

The relationship between thermodynamics and information theory is well
established.® Recently Reiss® and Reiss and Huang® have investigated the
application of statistical thermodynamics to information theory. In the latter
paper a general formalism was developed for compact codes, and Huang
and Reiss® applied this formalism to some specific examples of binary
codes with and without memory.

The attempt in this last paper was to optimize (i.e., minimize) the
transmission time-bandwidth product. Huang and Reiss came to the con-
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clusion that their prescription of optimizing the transmission time per bit
did not in all cases lead to a reduction of transmission time-bandwidth
product compared to that which is obtained with a fixed transmission time.
Since this conclusion appears somewhat surprising, the present investigation
was initiated to review the concepts which underlay that result and to provide
a better understanding of it. In fact, we find that the conclusion was the result
of a mathematical error and that a correct analysis indeed leads to the
expected result.

In this paper we shall first briefly review the Huang—Reiss concepts,
then extend and generalize them to a pulse-code modulation message based
on an a-letter alphabet with arbitrary Markovian memory. This general
formalism will then be reduced to the specific instance of a binary code and
applied to the examples investigated by Huang and Reiss. Since our con-
clusions differ from those of Huang and Reiss, we shall briefly trace their
calculations in order to identify the origin of their error.

2. STATISTICAL THERMODYNAMIC FORMALISM

Reiss and Huang™® consider the transmission of a binary PCM message
(a sequence of pulses representing zeros and ones). They show that maximum
information can be transmitted in a given transmission time if the length
of the pulse transmission time is matched to the statistics of the message.
Based on statistical thermodynamic arguments and an isomorphism between
thermodynamics and information theory (which leads to information analogs
of temperature, pressure, entropy, free energy,...) they define an information
theory partition function. From this they deduce the optimum transmission
time 7; for a given bit (0 or 1) to be

7, = 1lnp, ()

where p; is the probability of the bit b, in the “language” constituting the
message.

For correlated messages, ones in which the probability that a given bit
will be transmitted is influenced by the bits previously transmitted, a more
general formulation must be used. In this case the optimum transmission
time for a particular bit ~(i|S) depends on the conditional probability
p(i]S) that that bit will be used at that given position in the message

7(i[S) = — 7 In p(i|S) 2

where p(i|.S) is the conditional probability of the bit b, appearing as the next
bit in a message whose “state” is S. For a finite Markovian system the state
S is defined by a finite sequence of preceding bits.
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In the third paper of the series, Huang and Reiss'® introduce the Wiener—
Khinchine theorem,”® which relates the autocorrelation function of the
message ¢(t) to the power spectrum G(w),

G(w) = f e~ 10i(7) dr (3a)

in which w is the angular frequency and ¢ is the displacement time in the
autocorrelation function. We of course also have the inverse relationship

$(1) = (1/27) f _w Glw)e " deo (3b)

These equations are familiar in other branches of physics as well. In atomic
and molecular physics the correlation function is that of the electric dipole
operator and G(w) is the spectral line shape of the absorbed or emitted
radiation, or ¢(¢) is the autocorrelation function of the dynamics of molecular
motion (position and time) and G(w) is directly related to the cross section
for momentum and energy transfer in neutron scattering by the molecular
system.®

3. GENERAL POWER DENSITY SPECTRUM

The autocorrelation function of a message is defined by the integral

T-t :
80) = lim e—— [ S@)SG + d, 150
Toow I — 1 o (4)
. 1 i
= 7!1:‘1; mf_tS(T)S([ + 7)dr, t <0

where S(7) is the pulse intensity at time 7. The limit implies that it is possible
to transmit an infinitely long message from which the statistics can be deter-
mined. If only a finite number of messages are possible, then the limit
actually terminates at a time 7 required to send all possible messages.
However, since a sequence of m messages transmitted in succession is itself
usually a possible message, the “set of all possible messages” is usually
infinite and requires an infinite transmission time. An alternative to (4) is the
ensemble average

60 =] st ary )

where 7 is now the length of a single message and the average is an average
over all possible messages. In a strict operational sense (5) is just as difficult
to carry out as (4), but it usually easier to conceptualize. Since the possible
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number of long messages is very much greater than the number of short
messages, the average is dominated by the statistics of messages for which
T — oo and hence we achieve (4) from (5) in the mean.

In a strict sense &(¢) is usually normalized by dividing expression (4)
by its value at ¢ = 0, i.e., by

$(0) =<(1/T) f " Sy dr ©)

but for our present purposes we make no use of this normalization and we
shall therefore omit it. Of more importance, S(¢) is properly defined as the
variation of the transmitted signal from the mean transmitted intensity, so
that (in the absence of long-range correlations) one has

lim g(1) = 0 0

This suppresses the appearance of a delta function at w = 0 in the power
spectrum G(w). We shall therefore assume that S(7) is so defined and hence

«amn | swde = o ®)

We point out that (8) does not imply (7), and that the limit in (7) may not
exist if there are long-range correlations in S(7). The simplest and most
common type of long-range correlation in a message is the appearance of
periodicities in S(r). These arise primarily from the artificial, but common,
approximation of square pulses with equal (or rationally related) transmission
times. In such cases the power spectrum consists of a discrete set of frequencies
(delta functions) as well as the continuum spectrum. We shall return to this
point later.

We now describe the message in terms of an alphabet of letters b;.
In a binary code there are only two letters b, = 0, b, = 1; in English there
are at least 27 characters,? b; = a, b, = b, by = ¢, etc. A message is a sequence
of letters b;,b; b, - and can then be characterized by the ordered set
{J1s 25 J3s-er Ju»r--}. Since each message corresponds to a different sequence
of [etters, the mth message is denoted by the set {ji,, joms Jam»---» Jn,,n; Where
N, is the number of letters in the mth message. (The “message” in the sense
used here is the total set of symbols transmitted and includes all identifiers,
punctuation, and redundancy checks which may be transmitted.)

We shall denote the signal or pulse associated with the letter b; as
5(t; ), measured from some arbitrary zero of time. Usually the signal will
be such that 5(¢;j) = 0 for ¢+ < 0 but it is not essential that the time origin

2 We include a blank space and all punctuation symbols which may be transmitted in a
message as ‘‘characters.”
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associated with a signal pulse satisfy this condition. Since the message is
transmitted as a sequence of pulses, each pulse must be allowed a certain
transmission time and hence the transmission of the signal for the kth letter
requires a delay of o, before the next pulse can be transmitted.® Thus the
transmitted signal corresponding to the sequence {j. .} is

S(t) = 2 5(t = tims Jeum) (92)

k

where
tl,m == O, tk+1,m = Zk,m + O'jk‘m (9b)

Substituting (9a) into (5) gives

$(t) :<T1— ZJT“t k,zk'S(T =t Js(T + 1 = tes ) d“'> (10)

0

The power spectrum is then

[ee]

Gw) = f e d

© T
:< dt lim lf dr Z s(r — te; jos(z + t — tk,;jkl)e—iwt>
)y &%

-0 T o0
(1)
If we now put = — 1, = wand r + ¢t — 1, = v, this becomes
G(w) = Iim<—] Z J s(u; ji) exp(i wu) du
T &
x fs(v;jk,) exp(—iwv) dv exp[~iw(t, — tk)]>
. 1 . .
- hm<7 S gt (@lexpliot)le; () exp(zwzk,)> (12)
ke, k!

g,(w) is the Fourier transform of the pulse transmitted for the jth symbol of
the alphabet. Since the average is taken over all messages, (12) reduces to an
average over the language:

G(w) = (1Ko)[<| gdw)®> + 2 Regi*(w) 2 Tyi;8/(w))] (13)

3 It is also possible to consider that the time delay between the kth and the (k + 1)th
pulses depends on the two characters b, and b,.,, but we shall ignore this minor
complication, and assume that the delay between two pulses depends only on the
preceding character.
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where
Tsij = e_iwts (13a)

and
=ty =ty = > o (13b)
r=0

The time ¢, is the total displacement in time between the transmission of the
symbol b; and the sth following symbol.

Equation (13) is a much more convenient and more general expression
than could be developed following the Huang-Reiss procedure. In their
work the correlation function itself is explicitly evaluated and then the
Fourier transform vyields the power spectrum. As a practical matter the
correlation function can be easily evaluated only when the transmission times
of the individual pulses are rationally related. The complexity of this process,
however, is apparent even in the simple case of a binary code with two
pulse lengths in the ratio 1:2. For an arbitrary code the total time span
which would need to be considered in constructing the correlation function
would have to be the least common multiple of the transmission times of the
set of message pulses. Furthermore, if the pulse shape were anything more
complex than square pulses of arbitrary amplitude, the algebraic structure
of the correlation function would be replaced by expressions involving
convolution integrals of the pulse shapes. These complexities are essentially
bypassed in Eq. (13), which expresses the power spectrum directly in terms of
the Fourier transforms of the individual pulses g,(w) (containing the process
of implementation of the message into a transmitted signal) and the time
displacement matrix Tj;; (containing the statistics of the jth symbol of the
alphabet appearing s positions after the ith symbol).

Equation (13) is the general expression underlying the calculation of the
power spectrum. In order to actually utilize this expression we must be able
to evaluate, at least in a statistical sense, the time displacement function t,.
The extent to which this can be done depends on the extent to which one
knows the statistical structure of the language.? For the purposes of calcula-
tion of power spectra the structure of the language is defined by the condi-
tional probability that a letter b, appears in the language given the preceding
sequence {/i, jz,..., j;}. Uncorrelated messages imply that the probability of
appearance of a given letter is independent of the previous sequence. If the
minimum length of sequence required to completely define the statistics of

* The statistics of messages of course depends on the universe of discourse. The frequency
of occurrence of particular symbols is dependent on the subject matter being transmitted.
In the information theory sense, then, physicists and lawyers speak different languages.
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the message is k, then the language constitutes a kth-order Markovian
process.

The simplest situation is, of course, the uncorrelated, or zeroth-order
Markovian, process. The time displacement factor in (13) is independent of
i and can then be written

Ts]' = zkas—l,ke_iami = <Ts—1>e_iwaj (14)

where p, is the probability of appearance of the kth letter and o, is its
transmission time. From this one obtains

(T = {T_1p<e™ ) (14a)
Tsj — e—iwa]<e-iwa>s—1 (]4b)
and
o) = L )2 <g*(w)e"'“"’><g(w)>}
60) = 255 [<let + 2 Re E (19)

We may also note that (15) may be simplified notationally even further by
setting

F(w) = gHw)e o° = f_m s(o — 1)e " dt (16)

so that g(w) is the Fourier transform of the pulse measured backward from
its end, in distinction to g(w), which is measured forward from the start.
If the pulse is symmetric, we then have g(w) = g(w).

For a correlated message (15) may be generalized

Glw) = (1/<opX|g(w)}?> + 2 Re(g*M(l — M)~ 'g> 17

where g is a vector and M is a matrix of displacement factors. For the
uncorrelated process g is just the vector of the Fourier transforms of the
pulses which make up the alphabet and A is the matrix

My = e ™py (18)

In this case (17) reduces to (15). For a nth-order Markov process the trans-
mitted pulse may depend not only on the symbol being transmitted but on
the state of the system, i.e., the n preceding symbols as well as the symbol
presently being transmitted. The “‘state vector” therefore consists of an
ordered sequence of n + 1 elements and the probability of the system
emitting a symbol characterized by the last index is conditional upon the
specification of the first z indices. In this case the transmitted pulse is identified
by + 1indices and the vector g contains r"** elements, where r is the number
of symbols in the alphabet. Thus g is actually an (» + 1)th-rank tensor
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which is mapped into a vector. Equation (18) is then still valid if p, is replaced
by the state transition probability which takes the system from state j to
state k. This transition probability vanishes, of course, if the last » elements
of the initial state do not correspond to the first n elements of the final state.
Thus, if the state vector S is the sequence {abc --- f}, the transition probability
P(S — S) vanishes unless S’ is the sequence {bcd - fg}, in which case the
transition probability is the conditional probability P(S — S’} = p(g|bcd -+ f).
The most convenient mapping of the state vector into a scalar (and
hence the g tensor into a vector) is to consider the sequence abc - j as the
representation of an integer in a base-r number system. For an ath-order
Markovian process one then can write « = ar™ + br* ™! + -+ jand

P(S—8") = P(a->PB) = Py
= §(r-amod r* + B mod r — k)p(8 mod r|« mod ™) (19)

where 3(x) is the Kronecker delta: 8(0) = 1; 8(x) = 0, x # 0.

We shall make no specific use of this completely general formalism
except to apply it to the case of a binary first-order Markovian process in
Section S.

4. APPLICATION TO BINARY CODES

The binary code consists of two symbols, which we may take as 0 and
I. It is simplest to consider a coding in which 0 is represented by the absence
of a pulse and a 1 by its presence. Huang and Reiss® considered only
rectangular pulses, but we shall not specify the shape yet, leaving it arbitrary
with a transform g,(w). If the probability of a 0 is p, and that of a | is p;
(with py + p, = 1), we have

(o) = peoy + p1o1 (20a)
|g(@)®> = p1|g1(w)]? (20b)

and
<€—ima> — poe~imao + ple~iwal (200)

where o, and o, are the transmission times for the respective signals. Then,
from (15)

Glw) = pOpllgl(w)I2
PoCo + D101

1 — cos woy
Po(l = cos wag) + pi(l — cos woy) — pop; [l — cos w(og — 0y)]

1)

X
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If 0, = o, (fixed transmission rate), this reduces to

G(w) = (prpo/o)| g1(w)]? 22

which is a useful generalization of Huang and Reiss’ result and reduces to it
when |g,(w)|? is evaluated for a square pulse. However, we do not recover,
in this formulation, the delta function which Huang and Reiss obtain. We
can achieve this if the various limiting processes implicit in reaching (15) are
carried out more carefully. On the other hand, as indicated above, we should
define our symbol pulses in such a way that the time average over all messages
is zero. Thus g;(w) should be replaced by

iwo

I
gi(w) — P < > 81(0)

and gy(w), instead of representing the absence of any signal, should be
considered to be

] — e—iwoy

—D Tiwlay £:(0)

The expedient of simply ignoring, in the power spectrum, the é-function at
zero frequency accomplishes the same end result.

Huang and Reiss also consider an explicit nonconstant transmission
time case with o, = 20, . In this case we obtain

G( ) - 4p0 pO Igl(w)‘z(l + cos wol) (23)
o 1 + pol + 2p, cos woy + py?

which does not agree with the Huang-Reiss result. In the appendix we review
the Huang-Reiss analysis and show, in fact, that errors were made in those
calculations.
For a rectangular pulse of amplitude unity and width o, we have the
well-known transform
1 — e 99

glw) = ———— (24a)

(1)

and
[g(w)|? = ;)2—2 (I = cos way) = [(2/w) sin (wo,/2])? (24b)

If the bandwidth of the power spectrum is defined as the width at half
maximum, then (22) has a transmission time-bandwidth product given by
owy, = 2.7831. For nonequal transmission times we have from (23)

Glw) = 4olpo} ;” (M) [l + 2p, cos woy + po2l™ Y (25)

Po \ woy
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where the “optimized” transmission rate (with o, = 20,) corresponds to
Po = 0.381966. The mean bit transmission rate is (1 + py)o, and we find

(1 + po)oran, = 2.7008

which is a reduction of approximately 3%, compared to the case of constant
transmission rate.

If, however, we return to (21) and, with p, fixed, vary the ratio oyfoy,
we find that {c>wy,, has a minimum value 2.6538 (a reduction of 5%, below
the uniform transmission rate value). This minimum occurs for o,/c; = 1.509
and hence corresponds to a transmission time ratio which is not as large as
the ratio corresponding to the thermodynamic optimum ratio oy/o, = 2.

Figure 1 shows, for p, = 0.381966, the transmission time-bandwidth
product for a binary coded message. Bandwidth is defined as the value
Wy, [Glwy;s) = $G(0)], calculated from (21) with |g,(w)|? corresponding to a
square pulse. The small circles indicate the time-bandwidth product for
oy = oy {0/{(e> = 1) and for o, = 20, (5,/{o)> = 0.7236). The dashed line is
a similar curve for a Gaussian pulse shape, i.e., |g;(w)]? = exp —P5(wo)2

LA A E R BN B B B B B
2.80

/
/
I
|
]
]
]
/
]
/
/

o

t

<g>w.

0.6 0.7 0.8 0.9 1.0
01/<0>

Fig. 1. Time-bandwith product for an uncorrelated message, p; = (V5 — 1)/2 =
0.618034. The width is defined as the frequency at half height of the power spectrum.
Solid line: square pulse; dashed line: Gaussian pulse, |g:(w)|? = expl —(ws)?/12]. The
two open circles identify the cases oo = 0; and op = 20, (01/<0> = 0.7236).
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The width of the Gaussian has been taken to be such that it has the same
second moment as a square pulse and hence the power spectra of the two
pulses have the same second derivative at w = 0.

5. BINARY CODE WITH MEMORY

When the probability of the appearance of a letter of the alphabet
depends conditionally on the sequence of preceding letters one has a
Markovian process. We shall now extend our analysis to the case of a first-
order process in which the probability of occurrence of a 0 or a | depends
on the value of the preceding bit. The extension to higher order Markov
process and to larger alphabets will be obvious.

In the binary first-order process there are four conditional probabilities:
Poos Pois Pio, @and py;, where p;; is the conditional probability that bit j will
occur when the preceding bit is known to be i. In more common conditional
probability notation

Pi; = P(J'If) (26)

In addition we also define the unconditional probabilities P, and P,
the probabilities that a 0 or a 1 occurs in the message ensemble. These
probabilities are not independent; we have the following relationships:

Z_ Pipy = P, (272)
S -1 @7b)
Z Pi=1 (27¢)

This set of equations, which is generally valid for any first-order
Markovian process, defines the state probabilities P; in terms of the off-
diagonal transition probabilities p,; (i # j). These off-diagonal elements may
be taken as the defining independent parameters of the Markovian process.
For the binary case in particular we have

Pio Po1
= P10 po= 8 27d
¢ Pio + Po1 ! P10 + P (27d)
and
PooPio k Po1P1o Po1P11
P = > .P = P - 2 P =
% por + Pro ot 7 por + Pio 1 por + Pro
(27¢)

To construct the time displacement matrix M we identify the four state
indices (00, 01, 10, 11) that define the conditional probabilities with the
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matrix indices 0, 1, 2, 3. In order to distinguish between the two forms of
enumeration we shall use Greek letters to indicate the matrix index (¢ =
0, 1, 2, 3) and Latin letters for the state index (i = 0, 1). With the transition
probabilities defined by (19), M then has the form

poe~iwoo ple—iwao 0 O
0 0 e—iwo e~iwal
AM = : : i P (28)
pOe‘l(.OUZ ple*‘lwo'z 0 0
0 0 pZe—iwas pse—ia)as
and we find
(M — M) 'g> = (1/K) g, e *°«0ps8s)e (292)
where, with &, = e~ "%, we have
1 —psé&s 1 — psés piy 213
0= Pata 2138 1 — poée 1 — pobo
1 —psés 1 — ps&s pi&y Pié
Dafs Pafa I — poéo 1 — poéo
K = (1 — poéo)(l — pa€s) — p1pséibo (29b)

The second term in (13), which we can write symbolically as 2 Re{g*e ™ *%sg>
can then be expressed as

<g*e—iwtsg> = (I/K) Zpaga*gaQaﬁpﬁgB (30)
af

When a 1 is transmitted as a pulse and a 0 as blank, then goo(w) = go(w)
= 0 and g,¢(w) = go(w) = 0 and the expression becomes

y 1
(g*etg) = 'E(ngl*fl + P118:%E)[pofapigr + (1 — pofo)pagsl

_ Pi(pofrg:* + pabaga®)pabapigr + pall — pofo)gsl 3D
(p1 + (1 = pobo)(I — psés) — p1pofiéel
and
__ J4! A1181%81 + A1381%8s + A3185%81 + Ass85%8
(@0() = D1+ P (I = poéo1 — psés) — pipofiés
(31a)
where

A = pol(1 — Pofo)(l — pa€s) -+ pipaéiésl
Arg = 2paps(1 — poéo)és, Azy = 2p1papaals
Ass = pal(l — poéo)(l + paés) — pipo£iésl
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If there is no correlation between successive signals, we have p, = p,,
p1=psand & = &, & = &, and (31) reducestop,?|g|?6,(1 — poéo — p1é1) ™%
which leads again to Eq. (21).

For square pulses we introduce (24a) and (24b) into (31) and make use
of the identity |1 — £[2 = 2 Re(l — £) for |£] = 1; this reduces (13) to the
form

2 . 2p1ps (1 — pofo — P1E)(1 — pofy — pabs)
X)) Pt po Re (1 = polo)(1 — pas) ~ prp2biéa (32)
In order to compare this with the Huang-Reiss condition we now
specify po1 = pio (p1 = p2) and poy = p1; (po = ps). Furthermore, we set
ap1 = 019 (07 = 0,) and ogy = 041 (9o = 03), which implies also ¢, = £, and
& = &;. For this case the denominator in (32) factors into two terms, one
of which cancels one of the terms in the numerator, and we then obtain

1 — piéy — paés
G 2 = Re — 151 #7358
(D G@)o Py € 1+ pi& — pats

— p1Ps(l ~ cos woy)
pu(l + cos way) + pa(l — cos wag) — pyps[l + cos w(os — o1)]

(33)

With a constant transmission rate, o; = o5 = o, this reduces further to

2p; ps(l — cos wo)
G 2 _ 34)
oGlw)e® = 3= 2(p1 — ps) eps wo + (py — ps)* @4

which is one of the cases considered by Huang and Reiss. They also consider
the situation in which o is twice o;; this leads to (o) = (1 + pg)o; and

2p.ps(1 — cos woy) _

U) = T el = 2pseos way 7] (2 =20 )

The Reiss prescription for the “optimum” transmission rate is

o;; = —k In p;; and hence for o5 = 20, we have p,? = p; or p; = %(\/5 -
= 0.61803, p, = 0.38197. The normalized power spectrum G(w)/G(0) is
shown in Fig. 2 for this value of p,. The dimensionless abscissa in this figure
is the frequency times the mean transmission time. The power spectrum is
calculated for several values of the ratio o1/03 between £ and 1. Because of the
correlation in the message the power spectrum does not have its maximum at
w = (. This peaking of the power spectrum is very marked at oy /o3 = 0.6 but has
disappeared in Eq. (35), which corresponds to ¢, /o5 = 0.5. There are, however,
“hidden” delta functions in Eq. (33) whenever 1 + cos wo; and | — cos woy
vanish simultaneously. This occurs when wo, = (2k — D)7 and wey = 2mm,
where & and m are integers. In that case 1 + cos{w(e; — o;)] will also vanish.
Hence we obtain a delta function at w{c> = #[(2k — 2m — 1) p; + 2m]. The
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p, = 0618034

o 3 [ S | L
0 1.0 20 30 40 50

L w<o>

Fig. 2. Power spectrum for a first-order Markovian process, pio = por = (\/3 - 1)/2,
square pulse shape [Eq. (33)}. For o1; = 284, Eq. (35) does not display the delta function,
which must be determined by a limiting process o11 — 20p;:.

case o, = 20, corresponds to m = 2k — 1 and hence produces delta functions
at wio) = =(l + pg)m.
The resonance in Eq. (33) can be explicitly displayed by rewriting the
expression in the form
P1Ps[(2/w) sin(woy/2)]?
(py sin woy — pg sin wog)? + (1 + p; €os woy — ps COS wag)?
(36)

(>G(w) =

an expression which approaches the Lorentzian line shape. To see this more
clearly we now introduce oy/og = 2k — 1 + €)/2m, so that, with ¢ « |,
the two transmission times are close to the critical rational ratio. Then
with wey = 2mm + 038, Eq. (36) can be reduced to

_ 4173 (P12E7703/2<0>)2
Ge) = Sl [‘ MR E O (p1p362w2032/2<o>2)2] @7

where 8, = —p,en/{s> gives the position of the peak (in the limit e = 0).
At the peak we have

6@) = 7B |1+ (Z52)]

while the width of the peak is y = ¢Zn?p; p;052/{o>®. The total area under this
peak is therefore finite as ¢ — 0, and is equal to 2= p,2/{o>?&%. The position
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of these peaks is & = 2mm/o; and since for o3 = 20;, m may be any odd
integer, the total integral over all of the peaks (using the summation

> m~% = 7%/8) becomes
)
4\1 + P

to be compared with the total area of the power spectrum G(w) dw = .
The total discrete spectrum is then

o S )

which must therefore be added to the continuous spectrum, Eq. (35), to
obtain the total power spectrum.

6. CONCLUSIONS

We have explored several explicit examples of pulse code modulation.
The general formulation developed here for the calculation of the power
spectrum of messages transmitted with an arbitrary alphabet and arbitrary
symbol pulse shapes can be applied if the statistics of the language (in terms
of the probabilities of occurrence of symbols in the message) can be defined.
An attempt has been made to provide a recipe for optimization of transmis-
sion times of the symbols in terms of the statistical-mechanical analog
arguments of Reiss and Huang. In this connection, we have noted that the
complete problem of optimization must be referred to the transmission time-
bandwidth product rather than to transmission time alone. Depending upon
the definition of bandwidth (half-width of first peak, etc.) the prescription
for optimization may vary. In particular, for the definition we have chosen
in Fig. 1, optimization is not achieved by the Reiss~Huang prescription.

We have shown by explicit example that even with the time-bandwidth
problem, no such generalization is possible because of the periodicities
introduced into the signal correlation function if the transmission times of
the pulses are rationally related. Quasiperiodicities exist if the ratios of
transmission times are only approximately small rational fractions. Exact
periodicities of course produce discrete frequencies in the power spectrum,
whereas quasiperiodicities produce strong peaks in the spectrum correspond-
ing to the frequencies of the periodicities. Since the lowest nonzero frequency
peak will in general contain a significant fraction of the transmitted energy,
the bandwidth required for transmission of the message will generally be
limited by this feature rather than by any optimization process in terms of
spectral half-width. It is also important to realize that the existence of the
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peaks in the power spectrum is determined by the statistics and transmission
times of the symbols which constitute the message. The pulse shape, and the
frequency content of the transmitted pulses, can only affect the amount of
energy contained in these peaks, not their existence.

APPENDIX

In this appendix we compute directly the correlation functions for an
uncorrelated and a correlated binary code. We follow in general the approach
of Huang and Reiss,* but do not use exactly the same notations. Qur primary
purpose here is to demonstrate directly the discrete frequency spectrum
which arises from the assumption of rationally related transmission times.

As with Huang and Reiss, we shall here assume square pulses; a square
pulse of length ¢, shall represent the binary symbol I and an absence of signal
of length 7, shall represent a binary 0. Choosing an arbitrary point in time,
the probability that this point lies within a pulse is

R & U S (A.1)
Pity + Polo
where p, is the probability of occurrence of a 1 in the messageandp, = | — p;
is the probability of occurrence of a 0. For the interval 0 < 7 < ¢, thereis a
probability 1 — 7/r, that the interval 7 lies entirely within a single pulse and
a probability 7/¢; that it spans two message symbols. Since the probability is
p; that the second symbol is 1, the correlation function is

¢(7) = P[1 — (v/t3) + pa(r/11)] : (A

For longer times we must specify the lengths ¢, and ¢,; we choose the
Huang and Reiss case, f, = 2f; = 20. We also denote the correlation function
for Nt < = < (N + Di; by the notation ¢y(x) with 7 = (N + x)4,
0 < x < 1. Since an interval of length - may span atotalof N + 1l or N + 2
segments of length o, we have

2
a0 =SB 1 b, ey (A3)
Po
where Py is the probability of a message of length No. The recursion formula
for Py, given by Huang and Reiss, leads to Py = [I + po(po)¥1/(1 + po) and
the correlation function is

b = (1L2) 41 = p0 = (4 ol + 1220 = 98

(A.4)
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The spectral density is then

G(w) = 2 Re J:v e g(r) dr

o0 1
= 20 Re Z e‘“"”Nf e W% (x) dx
0

N=0

_ I‘-po 2 1—“‘00 fl —iwox .
_277(1 +p0) 8(w) + i +po?.aRe oe (I — x)dx

1 Lo
- 1 +£° 20 Re Z (=poe “‘“’)NJ e X[ — (1 + po)x] dx
I - — Po 4

2”(1 +p ) o) + | [+ po w’o

X [1 ~—coswo — (I — pO)Re_l_lti-:p—j—e’%’]

-9 [ + 4p0p1 sin? wo
T+ @?o(l + p)ll + 2p, €OS wo + poil

(A.5)

This expression is then an alternative derivation of Eq. (25) and does not
agree with Eq. (27) of Huang and Reiss.®

For the correlated, first-order, binary code we follow Huang and
Reiss® and assume that a | following a 0, or a 0 following a 1, uses a trans-
mission time o, while a 0 following a 0, or a | following a I, uses a trans-
mission time 20. We denote by Pgy,, Po;, Pio, and Py; the probabilities of
occurrence of the corresponding digraphs. The relative probability that an
arbitrary point in time lies in the interval of transmission of

a 1 followinga 0 is Py

a 1 followinga 1 is 2P

a 0 followinga 1 1is Py = Py
a 0 followinga 0 is 2Py

There are three possible situations corresponding to a pulse at this arbitrary
point. They are (a) the point lies in a “single length’ pulse, (b) the point
lies in the first half of a “double length” pulse, (¢) the point lies in the
second half of a “double length” pulse. The corresponding probabilities are

Py, Py

Po= 5P, 7Py T+ Py 1 Pog

P,=P, = (A.6)
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Using the same arguments as in the analysis of the uncorrelated message,
we find for the correlation function in the interval 0 < 7 < o

$(1) = o(x) = (Pa + Pl — x) + p11x] + Py (A7)
while for 1 = (N + x)o we can write
(1) = dn(x) = (Po + PIl — )Py + PF1) + x(Pysy + PRL]

+ Pyl(1 — x)(Py-1 + PP) + x(Py + P#1)] (A.8)
where P is the frequency of a message segment of length N, terminating in
a 1 which follows a 0; P is the frequency of a message segment of length
N, terminating in a 1 which follows a 1; P = P$ + P{P. We define Qy as
the frequency of a message of length N, terminating in a Q.

Since all message segments we consider follow a segment that ends with
a I, we can write immediately

P =0 P = piopors PP = p;i, Py = propor + P11 (A.9a)

Q1 = P1o; Q,=0 (A.9b)
and the recursion relations are also straightforward:
P = Oy-1pa (A.10a)
PP = Py_3p11 (A.10b)
O = Py-1P10 + On-2P00 (A.10c)

When we eliminate Q. we obtain a recursion formula for Py [in fact,
since the system of Egs. (A.10a)-(A.10c) is linear with coefficients that are
independent of N, all of the quantities P, PP, Py, Oy, and éy(x) satisfy
the same recursion expression]j:

Pyi1 = (1 + poopi)Py_y + pooPiiPy-s = 0‘ (A.11)
The system is decoupled into independent solutions for N even and for N
odd, both of which satisfy the same equation. When the conditions of
Eq. (A.9) are imposed on the solution we find that P, vanishes for N odd,
and

PR = %}7 [l ~ plopl] (A.122)
!
PR = 1—_;’0‘07}‘1'1 [PorP11i + ProPBopt] (A.12b)

When we introduce (A.12a) and (A.12b) into (A.10a)-(A.10c) and make
use of relations (A.6) and (27e), we find

Pan(x) = m—:%‘———ozopn)g {por(l + pi1) + pro(Poo + P11)PBoPT2

= p1oX[ProPor + (P11 + Poo — 2PooP11)PRoPt]}  (A.13a)
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and

Por
" x) = 2 + 2 n+1,n+1
Pon+1(X) 2“—‘—"(1 — Poop—11)2{ Pi11Po1 PioPoo " Pix

+ proX[propor — (2 = poo — P1)PEs P (A.13b)
The two expressions can be combined to give, with ¢ = pgop11,
1
palx) = =P [P8A(1 + p1)* + (=) pio(l — 2x)}

+ PorP1098™{(Poo + Pu1 + 2901 — (1 — ¢)x]
+ (=Y (poorr — 29)[1 — (1 + ¢)xT}] (A14)

At long times, i.e., for N — o0, g% — 0, the persistent part of the correlation
function is

Py (x) = ( [(1 + p12)? + (=)"pio(l ~ 2x)]

2)2
_ P 2 8p1 < (2k — Dmx]

and this yields the discrete power spectrum

_ 7P
Gle) = 4(1 — poop1r)’

o 8L = p)? S 8w — [(2K — Vo]
<[+ e + Mol 5 A TJBCDD] a1

The regular part of the power spectrum can be written

_ Po1P1o
o) 2(1 — poop11)?
© 1
x Re Z q”e"'”‘”"f e~ 44 (x) + (—YWA - (x)] dx
N=0 0

Po1P1o e 7 A (x) J‘l e 7% 47 (x) ]
= ————— Re f — X + e dx
2(1 — PooP11)” [ 1 ge ' o 1+ ge
(A.17)

where A*(x) = (poo + p11 + 2¢)[1 — (I F g)x]. Thus the evaluation of
the power spectrum can be reduced to evaluating the real part of that part
of either integral which is even in g. The algebra is now relatively simple and
we finally obtain

I . PoiP1o 1 — cos wo)

o Golew) = (1 = poop11)? Yw?o?

(Poo + P11 + Poop11) + 4pogp1y COS wo (A.15)
(1 + Poop11)2 — 4pooPia cos? wo

X
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The total power spectrum is of course Gy(w) + Gyu(w) from (A.18) and
(A.16); this is in agreement with (32) when one sets £, = £ = €2 and
& = & = &, and with (35) when one sets poo = P11 = Ps, Por = P10 = Pa1-

It should also be evident that the construction of the correlation function
by a method similar to the arguments used here would not be possible for an
arbitrary relation between the two times #; and f, and would have been
significantly more complicated for an arbitrary pulse shape.
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